

Measure of Central Tendency:

The Mode

- The category with the largest frequency (or percentage) in the distribution.

The Mode: An Example

- Which of the three candidates represents the "mode" for these candidates?
- Variable=Candidates Candidate A-11,769 votes Candidate B - 39,443 votes Candidate C-78,331 votes

Level of measurement =

The Mode= \qquad

The mode can be calculated for variables within all levels of measurement that are: nominal, ordinal, or interval-ratio.

The Mode: An Example

- Which of the three candidates represents the "mode" for these candidates
- Variable=Candidates Candidate A-11,769 votes Candidate B - 39,443 votes Candidate C-78,331 votes

Level of measurement = nominal (why?)
The Mode= Candidate C (why?)

Measure of Central Tendency: The Median

- The score that divides the distribution into two equal parts, so that half the units (cases) are above it and half below it.
- The median is the middle score in a distribution.
- The median is appropriate for ordinal or interval-ratio data.

Finding Median for Interval/Ratio Variable \# of hate crimes by state Steps to Determine:		
1. Order the		
NC	= 39	hate crimes) from highest
$\begin{array}{ll}\text { Penn } \\ \text { TX } & =141 \\ =287\end{array} \quad$ to lowest or vice versa		
$\begin{array}{ll}\text { Ohio }=255 \\ \text { Fla } & =240\end{array} \quad \begin{aligned} & \text { 2. Add } 1 \text { to the total \# } \\ & \text { units (states) if there is }\end{aligned}$		
States ordered low to high odd \# of units (e.g., $1+5=6$)		
NC $=39$ 3. divide resulting num Penn $=141$ by $2(6 / 2=3)$		
FlaOhaOhio$=240$$=255$ 4. Count down that ma		
$\begin{array}{lll}\text { Ohio } & =255 & \text { 4. Count down that many } \\ \text { TX } & 287 & \text { units (cases) to identify the }\end{array}$		
\# of cases (or units) = $5 \quad$ middle or median (Fla)		

Percentile

Table 1: Satisfaction with Health

	Freq	Cum Freq	$\%$	Cum \%
Very Low	5	5	18	18
Low	7	12	25	43
Moderate	6	18	21	64
High	7	25	25	89
Very High	3	28	11	100
Total N:	28			

Steps to Determine Percentile: determine cumulative percentages and then locate the percentile of interest. The $75^{\text {th }}$ percentile would be which category: \qquad

Finding the Median for an Interval/Ratio Variable

What is the interval/ratio variable below?
What is the median \# of hate crimes?
What is the "unit of analysis"?
Number of Hate Crimes in State
$N C=39$
Penn $=141$
$T X=287$
Ohio $=255$
$\mathrm{Fla}=240$

The Mean

The arithmetic average obtained by adding up all the scores and dividing by the total number of scores.

The mean is used with intervalratio data.

Can be used with ordinal data but is not very accurate/precise.

Formula for the Mean

$$
\bar{Y}=\frac{\sum Y}{N}
$$

"Y bar" (\bar{y}) equals the average or the sum of all the scores, Y, divided by the number of scores, N
(for example add up the \# of hate crimes for the states and then divide by " N " or the number of states).

Calculating the mean with frequency distributions (ordinal variable):

Ordinal (Grouped) Data: Mode
Category with the most cases or "Satisfied (\#2)"
\qquad

Satisfaction with Parking	
Level of Satisfaction	Frequency
1 Very Satisfied	190
2 Satisfied	316
3 Somewhat Satisfied	54
4 Somewhat Dissatisfied	17
5 Dissatisfied	2
6 Very dissatisfied	2
TOTAL	581

Ordinal (Grouped) Data: Median

- Make sure values are ordered
- Add one to total frequency (if an odd \#): $581+1=582$
- Divide by 2: 582/2 = 291
- Calculate cumulative frequency and determine which category contains the 291st person (answer is "Satisfied" or \#2)

Level of Satisfaction	Frequency	Cumulative Freq
1 V. Satisfied	190	190
2 Satisfied	316	506
3 Somewhat Sat.	54	560
4 Somewhat Dis.	17	577
5 Dissatified	2	579
6 V. Dissatisfied	2	581
\quad TOTAL	581	

Ordinal (Grouped) Data: Mean

- Multiply frequency (\# of people) times category
- Sum the scores obtained; 1,074
- Divide by total frequency $1074 / 581$ to obtain mean category (mean $=1.85$ people per household)

Level of Satisfaction	Frequency	Category \times Frequency	
1 Very Satisfied	190	190	
2	316	632	
Satisfied	Somewhat Satisfied	54	162
4 Somewhat Dissatisfied	17	68	
5	2	10	
Dissatisfied	2	12	
Very Dissatisfied	2	1,074	
\quad TOTAL	581		

Considerations for Choosing a Measure

 of Central Tendency- For a nominal variable, the mode is the only measure that can be used.
- For ordinal variables, the mode and the median may be used. The median provides more information (taking into account the ranking of categories). Can also use interval/ratio but not precise.
- For interval-ratio variables, the mode, median, and mean may all be calculated. The mean provides the most information about the distribution, but the median is preferred if the distribution is skewed.

When choosing the appropriate measure of central tendency for a distribution, what should you consider? the level of measurement of the variables
(e.g., mode for nominal level)

What is the primary "weakness" of the mean?
the mean is highly influenced by extreme scores in one direction
(e.g., the mean may not "represent" the true distribution of the cases very well)

| Example of mean "unrepresentative"
 of sample |
| :---: | :---: |
| Sample 1: Sample 2:
 Score for Score for
 Five Women Five Women
 100 100
 110 110
 125 125
 125 125
 135 450
 What is the mode:
 What is the median:
 What is the mean: . |

\section*{Example of mean "unrepresentative" of sample
 | Sample 1:
 Score for
 Five Women | Sample
 Score |
| :---: | :---: |
| 100 | Five W |
| 110 | 100 |
| 125 | 110 |
| 125 | 125 |
| 135 | 125 |
| | 450 |}

What is the mode: 125 and 125
What is the median \qquad
What is the mean: \qquad

Sample 1: Score for	Sample 2: Score for
Five Women	Five Women

What is the mode: 125 and 125
What is the median: 125 and 125
What is the mean: \qquad Chapter 4-25

Example of mean "unrepresentative" of sample

Sample 1: Score for Five Women	Sample 2: Score for
100	Five Women
110	100
125	110
125	125
135	125

What is the mode: 125 and 125
What is the median: 125 and 125
What is the mean: 119 and 182

Normal Distributions (also called normal curve)

- Normal Distribution
- Used with linear variables
- A bell-shaped and symmetrical theoretical symmetrical theoretical
distribution (a theoretical distribution of cases is not an actual distribution of cases),
with the mean, the median, and the mode all coinciding at its peak and
- with frequencies gradually decreasing at both ends of decreasing
the curve.

Normal Distributions

Normal Distributions

- Normal Distribution
- What happens when we have a few cases that are far above or below the other cases?
- Negatively Skewed: a few extremely low values
- Positively Skewed: a few extremely high values

n

